Syllabus of the educational discipline «MATHEMATICAL ANALYSIS 2»

Cycle of Higher Education	First cycle of higher education (Bachelor's degree)		
Field of Study	12 Information Technologies		
Specialty	123 Computer engineering		
Educational program	Computer systems and networks		
Discipline status	Normative		
Teaching language	English		
Year of studies, semester	Second year, third semester		
Number of credits ECTS	4 credits		
Distribution by types of	Lectures, Practical studies, Laboratory studies, Independent		
trainings and hours of study	training		
Form of final assessment	Exam		
Teacher	Syniavska Olga Olexandrivna, associate professor of		
	department of probability theory and mathematical analysis,		
	PhD		
Teacher's contacts	olga.synyavska@uzhnu.edu.ua		
Course Schedule	According to the timetable		

The purpose of studying the discipline "Mathematical Analysis" is the formation of the students' ability to abstract thinking, independent analysis and synthesis of complex systems, as well as the ability to use the acquired fundamental knowledge at the stages of problem statement in mathematical and symbolic form.

As a result of mastering the discipline "Linear Algebra and Analytical Geometry" students must demonstrate the following learning outcomes:

knowledge:

- basics of series theory and their applications;

- technologies for the development of functions in power and functional series and their application to solve practical problems in modeling systems and approximate calculations;

- exact and approximate methods for solving ordinary differential equations and their systems in the problems of mathematical modeling of various processes and technical systems.

skills:

- apply methods for solving ordinary differential equations as the main tool for mathematical modeling of various processes and systems;

- correctly move from continuous models of processes and systems to the corresponding discrete models based on the use of functional or power series;

- apply power series for approximate calculation of boundaries and definite integrals, solution of algebraic and differential equations and other practical problems.

Prerequisites for learning				
Mathematical analysis 1				
Content of the educational discipline				
Module 1				
Content module 1. Differential Equations.				
Theme 1. Differential Equations of the First Order.				
Theme 2. The Second Order Differential Equations.				
Theme 3. Particular Solution of Differential Equations, Cauchy's Problem.				
Theme 4. The Method of Variation of Arbitrary Constants.				
Calculation work				
Content module 2. Functional and power series.				
Theme 5. Functional series.				

Theme 6. Power series.

Theme 7. Fourier Series. Laplace Transforms.

Content module 3. Elements of the theory of functions of a complex variable. Theme 8. Functions of complex variables. Theme 9. Taylor and Laurent series. Calculation work Modular control work Examination

Material and technical support (software) of the discipline

Mathcad (Geogebra, Desmos)

Course page on the	Syllabus of the educational discipline, hyperlinks to electronic		
Moodle platform	publications of the discipline, recommended literature, students'		
(personal training	attendance, lecture materials, presentations, questions for		
system)	self-control, methodical materials for laboratory works, tests, tasks		
	for checking students' knowledge.		
	<u>https://e-learn.uzhnu.edu.ua</u>		

Recommended literature

1. Higher mathematics: manual. Kyiv: National aviation university "NAU-druk" publishing, 2009. Part 2. / V. P. Denisiuk, V. G. Demydko, V. K. Repeta, [et al.]. 2009. 243 p. 2. Gavdzinski V.N., Korobova L.N., Maltseva E.V. Functions of several variables: textbook.

Odessa: ODESSA NATIONAL A.S. POPOV ACADEMY OF TELECOMMUNICATIONS. 2012. 48 p.

3. Gavdzinski V.N., Korobova L.N. Series: textbook. Odessa: ODESSA NATIONAL A.S. POPOV ACADEMY OF TELECOMMUNICATIONS. 2010. 44 p.

Assessment system of learning outcomes

Current control carried out the semester and evaluated by the amount of points (max is 100 points). A minimum amount, that allows a student to get credit is 35 (max is 100 points).

During the semester, students perform 2 individual computational works. Maximum number of points for each calculated work: 25 points.

Modular control work in each semester is divided into two control works; maximum number of points for each test: 50 points (dilution of tasks is specified in the test).

Final control is carried out in the form of exam and evaluated in points (max is 100 points, min is 35 points). The exam ticket consists of 5 questions - 2 theoretical and 3 practical. The answer to the theoretical question is evaluated by 20 points, and the answer to each practical question is evaluated by 20 points.

ECTS and national grading scale				
Mark scale	ECTS	Exam	Test	
90 - 100	А	Excellent		
82 - 89	В	Good		
74 - 81	С		Satisfied	
64 - 73	D	Satisfactory		
60 - 63	Е			
35 - 59	FX	"Unsatisfactory" with possibility	"Not satisfied" with possibility	
		to pass the exam again	to pass the exam again	
1 - 34	F	"Unsatisfactory" with obligatory	"Not satisfied" with	
		repeated study of the discipline	obligatory repeated	
			study of the discipline	