APXITEKTYPA TA KOMIOHEHTW
KOMITHOTEPHNX CUNCTEM

YK 681.14

V. Kotsovskyl F. Gechel, A. Batyuk2 A. Mitsal
‘Uzhgorod National University
2 viv National University “JIbBiBCbKa NoniTexHika”

BACKPROPAGATION ALGORITHM FOR COMPLEX
NEURAL NETWORKS

©Kotsovsky V., GecheF., BatyukA., MitsaA., 2012

PO3rnstHyTO KOMMEKCHI LUTYYHI HEeMPOHHI Mepexi, YHKLIT akTuBalil SKUX € KoMM-
NIEKCHUMW aHanoramu pauioHasnbHOl cMrmo'ign. HaBefeHO anropuTm HaBYaHHA LMX Mepex,
3aCHOBaHMWI Ha MeTOZi 3BOPOTHOIO MOLUMPEHHSA MOXMOKM.

Kno4oBi cnoBa: WTYYHUIA HEMPOH, LUTYYHI HEMPOHHI MepeXXi, KOMMNAEKCHI HeApOHHI
MepeXi, aIrOPUTM 3BOPOTHOINO MOLUMPEHHS MOMUIKMN.

Neural networks with complex weights and continuously differentiable activation
function have been studied in the paper. Learning algorithm based on the backpropagation
method for rational sigmoid function has been given in the paper.

Key Words: artificial neuron, artificial neural networks, complex neural networks,
learning algorithms, backpropagation.

Introduction

Neural networks are the effective means of solving the task of function approximation, forecasting
the dynamic systems behaviour, multiple attribute set classification, pattern recognition, associative search
and lot of other tasks. At present many types of architecture of neural networks with real weights have
been developed in the information science. The variety of architectures is conditioned by different relation
types between neurons, various activation functions (continuous or discontinuous (threshold type)) and
different functioning mode of the neural networks. In connection with it many learning algorithms have
been offered for neural networks. We introduce the notion of the complex neuron with continuously
differentiable function and consider neural networks being built of these neurons. We also describe the
modification of the well-known algorithm of backpropagation [1] for complex networks. Complex neural
networks can be used for both solving the same tasks as real networks (with possible reduction of the
number of neuron of input and output layers) and specific problem solution with complex initial data (for
example the approximation of functions of complex variable).

Complex neural networks
The complex neuron is the functional element with n inputs zJf...,zn and one output y, which is
calculated thus:

n

y =f S— +wO0 ,
k!)

where complex numbers zI,...,zn are input signals
wO,wl,...,wn, - complex weight coefficient
(similarly to [2-3] we can term 0 as the threshold
of neuron element), /: C—»C - nonlinear

function, continuous with its partial derivati'. a
which we call the function of activation.

Complex neurons permit the different mode
of connection in neural networks. We confir-
ourselves to studying the multilayer feed-forwarr
neural networks that is the networks satisfying the
following condition: the neurons of each layer are connected with the neurons of previous or next layers b
the rule “each to each”. The first layer is called the input layer, internal layers are called hidden ones an _

the last layer is named the output layer. The proceeding of neural network can be described with a
following formula:

Figure 1 The complex neuron

>'kl=f H WjkIZjkl 4 wwen -+ XKkjl+1 - T/w >
\J J

where the indexj denotes the number of input neuron, k is the number of output neuron, / is the lay::
index, zjd =xAd+iyjki is the value of thej input signal of k neuron in / layer, wjd =uj +ivjK is the

value of thej weight coefficient of k neuron in / layer.

Learning algorithm
Multilayer neural network calculates output vector F(z) on the base of input vector z. We mean th:
learning algorithm of instmetion the selection of network parameters (weight coefficients wijkl) thus that

network puts in correspondence output vectors from the set } for input vectors from the se:

{ } . The collection of the pairs {I ,dm\ is called the learning sample. Let fk be the
value of output signal of k neuron in the last output layer / in the case, then the network input vector :-
equal to z“. Let us introduce the important variable that will be named the network error E

input layer hidden layers output layer

Figure 2. The multilayer feed toward complex network

E=xYJ\n-d[\.

We shall suppose that E - E{w) = E{U, V), where U is the vector components of which are the red
parts of all coefficients of our neural network, V is the vector components of which are the imaginary par

. coefficients of the network. During learning we shall change the weight vector in direction of
_r.igradient of E on every iteration:

AWTr - -Tjrgradis(t/r,Vr),Wr =Wr+A Wr,)

here r is the number of iteration.
Let

4/ =Tjwijkizjki +woki® a\i =Rc4n bkl=1mskl,{{z)=g(x,y) +ih(xy).
j

Lei us put down the components of gradient calculated by applying the last layer weigts

w
dE _x dE dgkl daki + dgk dbK +-dE dhki dal + dhkd dbK 3
dujkl - ddk dUjd dbd dujdj dnh[, dd[i duld dbK du Ne JJ
dE dE bgki “aki + dgu dbK dE dhk ddd ~ dhid dbd »
=2 +e @

dvig =g au dviki doK dvjklj dhl, gak ju dbh dvjkdj]

Let us adduce calculating formulas for partial derivatives in (3)-(4) (we shall miss the index t for the
implification of notation):

E —gu Redk, =hK Imdk, (5)
vki ohK
dki dad dbd _ dal A
dujki N ® it - & aum M quee - Y7 ©
naki ddki dbid _ ddy (7
Vi K v C dvild " Jd dvm

Then we set to selection of the activation function. The most popular activation function for real
neural networks are logistic sigmoid curve / (X) :1—-—-- or hyperbolic tangent tanhx (sometimes with
+e X

some additional parameters). Unfortunally, the above mentioned functions are discontinuous as functions
of complex variable. Therefore, they can’t be applied in learning algorithms for complex networks which
use the value of the gradient vector. The rational sigmoid

/' W =
M +1
is stripped of these disadvantages. For rational sigmoide we can write
fi?) =g(xy) +ih(xy),
where

hy)= Y

yjx2+y2+1

It is necessary to notice than the rational sigmoide possesses the values that lay in unit disk centered
at coordinate origin. In addition, the rational sigmoide compresses proportionally the real and imaginary
parts of its input argument and has the property of reinforcing “weak” input signals and decreasing
“strong” input signals.

Using the rational sigmoide curve we can easily obtain the following expressions foe par»
derivatives:

bd+ 1S4 dh ad+1Sd M1 _ dgk aklrkl
& (I5i/1+3 Akl (IN/1+1)3 Aad dbk Y 1+D2

3e 3e
The values of derivatives --— and —-, calculated according to the formulas (3)-(8) let
dujij dvjki
J]
the corrections Aujd i AvMd for neurons of the last (output) layer. Let us show, how we can calcvfattc

corrections of weight coefficients of other layers of our neural network by the instrumentality of |

3 3e
of partial derivatives —i--and — . For the last layer we have:
Juju dvjki

dE dE 3gd "akl +dgdl M, GE dnl, dai, dhl, db Y)

dq 2 MM iddd dok k] chiiydaki dgd db ok

dE . dE dgki daki +dgki dbd dE dhl, dal, dhl, bt W

fy, K Mi fyjki Mi dypo; dhk Mi dvd dbl gyn,;,

dE dE dgd dgk dhkd dhd ™ already calcs M
dgki dhk dak dbyy daki db

by the formules (6)-(8). The other partial derivatives are equal:

In the last two formules the partial derivatives

dak i AbKd da,! dou
VR
dyj

dxjid ~ Uild" dxaq tyijd

But the partial derivatives of E with respect of the value of input values xJ and yXM for the outpu:

=Ujid m

coincide by implicity with the derivatives of the function of network error with respect of the rea i
imaginary parts of respective output values of neurons of previous layer. Therefore

de _vy, dE de _vy, dE
dgj,i-i - dxjkl’ dhj,, k dyjK -

The formulas (9) is similar to (5) for the previous layers and provide the passage from the calcu'.-
of the coordinates of the current layer gradient to the calculation of the respective coordinates c:
previous layer gradient (the method of quick gradient calculation). The received algorithm of the correct:
of weight coefficients in according to formules (2)-(9) is the complex modification of well-known b.
propagation error algorithm, described in [1].

The question of the choice of the value of ijr (coefficient of the speed of the learning) in (2) is a\
important one in connection with the application of complex weight neural networks. The traditic
forthright approaches of searching Tr as the solution of the task of one-dimensional optimization
unacceptable because they require the multiple calculations of the network error E that is very difficu/.
networks with the bundle of neurons. Therefore we can set Tjr =4, where 4 is any preassigned nua
from the segment [0,01; 1]. In addition, for selectioning of the value of Tjr we can offer the same appro

that can be found in [3].
The learning of the neural network with the error function of the form (1) needs the consumptic :
considerable volume of the additional memory (one complex number for each parameter of the netw:

Therefore for the complex neural networks with the great number of complex neurons it is possible to feed
input vectors in random order and limit ourselves to calculating the gradient of the network error with

respect of the only current element (z!,dr) of the learning sample. In this case we can simplify the
formulas (3)-(4):

&E BE dgki daki | Bgkd Zbd +_BE Bhd Bakd ~Bhd Bbd
Buj, dgk ddk sujdi dod Bujklj dh, BdK Bujd Bobldujkij

BE BE Bgki 9«1 +?gu BbK +_BE Bhki Bak + Bhkd BbW
dviki dgk pav dvk dbki dvjkij Bu pawi avikl BHbIByjKl j

It will be observed that it is possible to use the various modification of back propagation algorithm
similar to the algorithms detailed in publication [2-5] changing its properly for use in learning of complex
neural networks.

Conclusion
Artificial neural networks with complex weights is enough simple and powerful architecture. This
architecture is extension of real weights network with continuously differentiable activation function and
provides high precision approximation of nonlinear functions. We used the complex activation function
similar to the well-known rational sigmoid and elaborated earning algorithm based on the backpropagation
of the error of our network. Our method can be applied to networks with different activation functions. The
batch-learning is also possible for our nets.

1 Rumelhart, D.E. Learning internal representations by error propagation / D. E. Rumelhart, G
E. Hinton, R. J. Williams // Parallel distributed processing, vol. 1, Cambridge, MA: MIT Press, 1986. p 318-
362. 2. YoccepmeH, ®. HelipokoMnbloTepHas TexHuKa: Teopus W npakTuka / @. YoccepmaH— M.:
Mup, 1992. - 240 c. 3. Haykin, S. Neural networks, a comprehensivefoundation / S. Haykin. —N.Y.: MacMillan
College Publishing Company, 1994. - 1104 c. 4. l'opbaHb, A. H, HelipoHHble CeTU Ha NepcoHabHOM KOM-
nbtoTepe / A. H. Topbanb, A.A. Poccues. - Hosocubupek: Hayka, 1996. - 225 c. 5 Anthony, M. Discrete
Mathematics ofNeural Networks /M. Anthony. -Philadelphia: SIAM, 2001. -132 c.

